Linux
¿QUÉ ES LINUX?
Linux es un sistema operativo diseñado por cientos de programadores de todo el planeta, aunque el principal responsable del proyecto es Linus Tovalds. Su objetivo inicial es propulsar el software de libre distribución junto con su código fuente para que pueda ser modificado por cualquier persona, dando rienda suelta a la creatividad. El hecho de que el sistema operativo incluya su propio código fuente expande enormemente las posibilidades de este sistema. Este método también es aplicado en numerosas ocasiones a los programas que corren en el sistema, lo que hace que podamos encontrar muchisimos programas útiles totalmente gratuitos y con su código fuente. Y la cuestión es que, señores y señoras, Linux es un sistema operativo totalmente gratuito.
Mi máquina corre Linux, y puedo asegurar que es uno de los sistemas que más aprovecha mi computadora, es decir, con el consigo ejecutar tareas mucho más rápido que con otros sistemas operativos comerciales. Y es que Linux no requiere grandes prestaciones para funcionar.
Las funciones principales de este magnífico sistema operativo son:
- Sistema multitarea En Linux es posible ejecutar varios programas a la vez sin necesidad de tener que parar la ejecución de cada aplicación.
- Sistema multiusuario Varios usuarios pueden acceder a las aplicaciones y recursos del sistema Linux al mismo tiempo. Y, por supuesto, cada uno de ellos puede ejecutar varios programas a la vez (multitarea).
- Shells programables Un shell conecta las ordenes de un usuario con el Kernel de Linux (el núcleo del sistema), y al ser programables se puede modificar para adaptarlo a tus necesidades. Por ejemplo, es muy útil para realizar procesos en segundo plano.
- Independencia de dispositivos Linux admite cualquier tipo de dispositivo (módems, impresoras) gracias a que cada una vez instalado uno nuevo, se añade al Kernel el enlace o controlador necesario con el dispositivo, haciendo que el Kernel y el enlace se fusionen. Linux posee una gran adaptabilidad y no se encuentra limitado como otros sistemas operativos.
- Comunicaciones Linux es el sistema más flexible para poder conectarse a cualquier ordenador del mundo. Internet se creó y desarrollo dentro del mundo de Unix, y por lo tanto Linux tiene las mayores capacidades para navegar, ya que Unix y Linux son sistemas prácticamente idénticos. Con linux podrá montar un servidor en su propia casa sin tener que pagar las enormes cantidades de dinero que piden otros sistemas.
Linux no sacrifica en ningún momento la creatividad, tal y como lo hacen algunas compañías informáticas. Linux es una ventana abierta por la que es posible huir hacia un mundo donde la verdadera informática puede ser disfrutada sin limites ni monopolios.
Linux es distribuido mediante una serie de distribuciones como RedHat, Slackware, Debían ... las cuales se diferencian por su método de instalación y por los paquetes (software) que viene incluido. Es posible que encuentre a la venta versiones de Linux y piense: "si, si.... decían que era gratis..." No se asuste, todo el software de Linux esta regido por la licencia de GNU, con la cual cualquier persona puede modificar un programa y venderlo según el desee, con la condición que la persona que compra ese producto puede realizar la misma acción o simplemente hacer copias para todos aquellos que lo quieran sin tener que pagar más (por lo tanto no se extrañe si encuentra distribución comerciales). Esta licencia es la garantía que afirma la absolutalibertad de este sistema operativo. Si no desea ni siquiera pagar esa mísera cantidad puede descargárselo de Internet totalmente gratis (bueno, sólo tendrá que pagar la factura de teléfono ).
Características de Linux
- multitarea: varios programas (realmente procesos) ejecutándose al mismo tiempo.
- multiusuario: varios usuarios en la misma máquina al mismo tiempo (y sin licencias para todos).
- multiplataforma: corre en muchas CPUs distintas, no sólo Intel.
- funciona en modo protegido 386.
- tiene protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.
- carga de ejecutables por demanda: Linux sólo lee de disco aquellas partes de un programa que están siendo usadas actualmente.
- política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memoria.
- memoria virtual usando paginación (sin intercambio de procesos completos) a disco: una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha (se sigue denominando intercambio, es en realidad un intercambio de páginas). Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio.
- la memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y éste puede a su vez ser reducido cuando se ejecuten grandes programas.
- librerías compartidas de carga dinámica (DLL's) y librerías estáticas también, por supuesto.
- se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.
- casi totalmente compatible con POSIX, System V y BSD a nivel fuente.
- mediante un módulo de emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.
- todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.
- control de tareas POSIX.
- pseudo-terminales (pty's).
- emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si tu ordenador ya tiene una FPU (unidad de coma flotante), será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.
- soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.
- consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64.
- soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.
- acceso transparente a particiones MS-DOS (o a particiones OS/2 FAT) mediante un sistema de archivos especial: no necesitas ningún comando especial para usar la partición MS-DOS, parece un sistema de archivos normal de Unix (excepto por algunas graciosas restricciones en los nombres de archivo, permisos, y esas cosas). Las particiones comprimidas de MS-DOS 6 no son accesibles en este momento, y no se espera que lo sean en el futuro. El soporte para VFAT (WNT, Windows 95) ha sido añadido al núcleo de desarrollo y estará en la próxima versión estable.
- un sistema de archivos especial llamado UMSDOS que permite que Linux sea instalado en un sistema de archivos DOS.
- soporte en sólo lectura de HPFS-2 del OS/2 2.1
- sistema de archivos de CD-ROM que lee todos los formatos estándar de CD-ROM.
- TCP/IP, incluyendo ftp, telnet, NFS, etc.
- Appletalk disponible en el actual núcleo de desarrollo.
- software cliente y servidor Netware disponible en los núcleos de desarrollo.
Versiones
El desarrollo inicial Linux ya aprovechaba las características de conmutación de tareas en modo protegido del 386, y se escribió todo en ensamblador.
Linus nunca anunció la versión 0.01 de Linux (agosto 1991), esta versión no era ni siquiera ejecutable, solamente incluía los principios del núcleo del sistema, estaba escrita en lenguaje ensamblador y asumía que uno tenia acceso a un sistema Minix para su compilación.
El 5 de octubre de 1991, Linus anunció la primera versión "Oficial" de Linux, - versión 0.02. Con esta versión Linus pudo ejecutar Bash (GNU Bourne Again Shell) y gcc (El compilador GNU de C) pero no mucho mas funcionaba. En este estado de desarrollo ni se pensaba en los términos soporte,documentación, distribución.
Después de la versión 0.03, Linus salto en la numeración hasta la 0.10, más y más programadores a lo largo y ancho de internet empezaron a trabajar en el proyecto y después de sucesivas revisiones, Linus incremento el numero de versión hasta la 0.95 (Marzo 1992). Mas de un año después (diciembre 1993) el núcleo del sistema estaba en la versión 0.99 y la versión 1.0 no llego hasta el 14 de marzo de 1994.
La versión actual del núcleo es la 2.2 y sigue avanzando día a día con la meta de perfeccionar y mejorar el sistema.
La ultima versión estable es la versión 2.2, que soporta muchos más periféricos, desde procesadores hasta joysticks, sintonizadores de televisión, CD ROMs no ATAPI y reconoce buena cantidad de tarjetas de sonido. Incluye también soporte para tipos de archivos para Macintosh HFS, Unix UFS y en modo de lectura, HPFS de OS/2 y NTFS, de NT.
Otras Versiones:
Linux 2.0
Linux 2.2
Linux 2.3
Comparación
Se señala las diferencias de Linux con el DOS y no con otro S.O. porque la mayoría provienen del DOS.
- No existe el concepto de unidad de disco. Todas las unidades en Linux se 'montan' como si fueran un subdirectorio más.
- No existe el concepto de extensión del nombre de un fichero. Los ficheros pueden tener nombres de hasta 256 caracteres. Los puntos están permitidos en el nombre de un fichero. Así, un fichero se podrá llamar:
DOSEMU-HOWTO.español.tar.gz
por poner un ejemplo.
- Los subdirectorios no se separan con el carácter '\', como en DOS, sino con el carácter '/'. Ejemplo:
/usr/src/linux-1.2.13/Makefile
- Existe diferencia entre mayúsculas y minúsculas. Por ejemplo, no es lo mismo 'dir' que 'DIR' que 'Dir'...
- Adiós a los atributos de los ficheros, tal y como los conoce el DOS. Cada fichero tendrá ahora 10 'atributos'.
- Entre un comando y sus parámetros deberemos dejar obligatoriamente un espacio en blanco. Por ejemplo 'cd..' no funcionará mientras que 'cd ..' sí.
- IMPORTANTE: Un sistema Linux NUNCA se puede apagar por las buenas. Antes le hemos de advertir al S.O. de que vamos a apagarlo (o reiniciarlo). La razón de que esto deba ser así es para que al sistema le dé tiempo de escribir en disco todos los datos que tuviera pendientes de escribir, salir ordenadamente de todas las aplicaciones que tuviera arrancadas y desmontar todas las unidades que tuviera montadas.
Existen muchas otras diferencias (gestión de memoria plana, ...), pero las mencionadas son las que más nos pueden influir en la forma de trabajar, al menos en principio.
¿Qué es el kernel?
El kernel o núcleo de linux se podría definir como el corazón de este sistema operativo. Es el encargado de que el software y el hardware de tu ordenador puedan trabajar juntos.
Las funciones mas importantes del mismo, aunque no las únicas, son:
- Administración de la memoria, para todos los programas en ejecución.
- Administración del tiempo de procesador, que estos programas en ejecución utilizan.
- Es el encargado de que podamos acceder a los periféricos/elementos de nuestro ordenador de una manera cómoda.
Existen dos versiones del Linux kernel:
Versión de producción: La versión de producción, es la versión estable hasta el momento. Esta versión es el resultado final de las versiones de desarrollo o experimentales.
Cuando el equipo de desarrollo del kernel experimental, decide que ha conseguido un kernel estable y con la suficiente calidad, se lanza una nueva versión de producción o estable. Esta versión es la que se debería utilizar para un uso normal del sistema, ya que son las versiones consideradas mas estables y libres de fallos en el momento de su lanzamiento.
Versión de desarrollo: Esta versión es experimental y es la que utilizan los desarrolladores para programar, comprobar y verificar nuevas características, correcciones, etc. Estos núcleos suelen ser inestables y no se deberían usar, a no ser que sepas lo que haces.
Como interpretar los números de las versiones:
- Las versiones del kernel se numeran con 3 números, de la siguiente forma: XX.YY.ZZ
- XX: Indica la serie principal del kernel. Hasta el momento solo existen la 1 y 2. Este numero cambia cuando la manera de funcionamiento del kernel ha sufrido un cambio muy importante.
- YY: Indica si la versión es de desarrollo o de producción. Un numero impar, significa que es de desarrollo, uno par, que es de producción.ZZ: Indica nuevas versiones dentro de una versión, en las que lo único que se ha modificado, son fallos de programación /bugs.
Unos ejemplos nos ayudaran a entenderlo mejor:
- ej1: versión del kernel 2.0.0: Kernel de la serie 2 (XX=2), versión de producción 0 (YY=0 par), primera versión de 2.0 (ZZ=0)
- ej2: versión del kernel 2.0.1: Kernel de la serie 2, versión 0, en el que se han corregido errores de programación presentes en la versión 2.0.0 (ZZ=1)
- ej3: versión del kernel 2.1.100: versión 100 del kernel de desarrollo 2.1.
Sistemas de Archivos
Sistema de ficheros linux (I)
Bueno como sabrás el DOS funciona con FAT, File Allocation Table, o sea una tabla a principio del disco duro donde se almacena, la información de cada bloque del disco, de manera que tenemos una lista enlazada para cada fichero.
--------- | 2| 0 FICHERO A bloques 0 2 6 --------- | 3| 1 FICHERO B bloques 1 3 4 --------- | 6| 2 --------- | 4| 3 --------- | fin| 4 --------- | | 5 --------- | fin| 6 ---------
Para leer un fichero A leemos en la fat el bloque 0, vemos donde continua y leemos la fat en el bloque 2, leemos el bloque del disco, y volvemos a leer el bloque de la fat donde esta el bloque 6. Esto parece rápido, y lo es i la FAT esta en memoria, pero si calculamos lo que puede ocupar una FAT de un disco duro de 1Giga donde el disco esta dividido en bloques de pongamos 4024Kb y pongamos 20 bytes por descriptor, tenemos una FAT de 5 megas, (no recuerdo de cuanto era el tamaño de bloque/descriptor en MSDOS), lo cual no se puede tener en memoria y si hay que leer cada vez de disco es muy lento. Cuando MSDOS funcionaba en disquete no era demasiado problema tener en memoria unos Ks de FAT, pero con los disco de ahora de Giga ya es un problema.
¿Como lo hace UNIX? ¿Y por supuesto ext2 de Linux? Con otra estructura de datos llamada i-nodes, que para cada fichero tiene un array, con las posiciones del disco donde se encuentra este. De esta manera cuando queremos leer un fichero, leemos solo un trozo de disco contiguo, donde encontramos todas las referencias a ése y no toda la FAT que puede ser de mas de un mega. Con los nodos-i (o inodes) no ahorramos espacio de disco (con respecto a FAT), la información de en que bloques esta cada fichero la tenemos igual pero mejor organizada.
Las tablas de i-nodes tienen un tamaño limitado, pero en caso de que se llenen con indirecciones se accede a otras tablas de i-nodes, con lo que el limite del tamaño de los ficheros es grande. (bueno esto lo he explicado un poco por encima se podría explicar extensamente).
IN> Me imagino que el ext2 es mejor que el msdos, pero realmente que IN> diferencias hay entre ellos (menos lo de los permisos y la lon- IN> gitud del nombre de los ficheros).
Pues como has visto es mas rapido y eficiente, aparte de no tener las limitaciones de usuario, permisos, nombres largos, etc.
El tamaño de bloque de disco, en MS DOS es fijo en función del tamaño de la partición, en linux en el momento en que formateas la partición con mkfs (o mk2efs no recuerdo) puedes elegir el tamaño del bloque según vayas a tener mas ficheros pequeños, o mas ficheros grandes.
Sistema de ficheros linux (II)
El ext2 tiene un tamaño de i-nodo fijo entre 1 y 4K, independientemente del tamaño de la partición. El tamaño del i-nodo se selecciona al crear el sistema de archivos y es seleccionable por el usuario.
El ext2 tiene una unidad similar al cluster, llamada bloque, y que es, por lo general de 1K, especificable por el usuario e independiente del tamaño de la partición, lo cual asegura un buen aprovechamiento del espacio libre con archivos pequeños.
El ext2 no usa una FAT, sino una tabla de i-nodos distribuidos en un número determinable de grupos a través de la superficie, lo cual permite balancear la distribución de los bloques de archivos en la superficie a través de dichos grupos para asegurar la mínima fragmentación.
El ext2 tiene un límite máximo de 4GB de archivo, pero no limita el tamaño máximo de la partición a 4GB, como es el caso de la FAT.
El ext2 tiene soporte para detección de un sistema de archivos desmontado incorrectamente cuando el sistema se apaga de forma errónea, y capacidad para autorecuperarlo en caso de fallo accidental.
El ext2 mantiene información de la última vez que se montó y se accedió al volumen (sistema de archivos), así como del número de veces que se ha montado dicho volumen desde la última comprobación automática, así como la fecha en la que se comprobó su integridad por última vez.
El ext2 permite asignar un porcentaje del disco duro que se reserva para el uso de usuarios con un "uid" y "gid" específicos.
El ext2 es un sistema de archivos mucho más avanzado que el MS-DOS, con soporte de corrección y detección de errores, compresión de archivos (todavía por implementar), mayor tolerancia a la fragmentación de archivos y con unos tiempos de respuesta muy superiores, aunque a un coste superior de utilización de memoria.
¿Qué es la Swap?
La swap es un espacio reservado en tu disco duro para poder usarse como una extensión de memoria virtual de tu sistema. Es una técnica utilizada desde hace tiempo para hacer creer a los programas que existe mas memoria RAM de la que en realidad existe. Es el propio sistema operativo el que se encarga de pasar datos a la swap cuando necesita mas espacio libre en la RAM y viceversa.
En Linux, la memoria total disponible por el sistema estará formada por la cantidad de memoria RAM instalada + la swap disponible. El acceso a la swap (disco duro) es mas lento que el acceso a la memoria RAM, por lo que si nuestro ordenador esta muy cargado de trabajo y hace un uso intensivo de la swap, la velocidad del sistema disminuirá. Un uso muy intensivo y continuado de la swap es un indicativo de que necesitamos mas memoria en nuestro sistema para que funcione desahogado con el uso que le estamos dando.
En linux generalmente se usa como mínimo una partición dedicada a swap (aunque también se puede tener un fichero swap).
¿Cuanta Swap necesito?
Esta es otra pregunta que es difícil de contestar: Todo dependerá del uso que se le vaya a dar al sistema y del espacio libre que tengamos.
Si vas a utilizar muchos programas a la vez y tienes poca memoria RAM, necesitaras mas swap, si tienes mucha RAM, no necesitaras tanta swap. Hay que recordar que un uso no intensivo de la swap es normal y no afectara mucho a la velocidad del sistema, pero como hemos dicho antes, un uso muy intensivo y continuado es un indicativo de que necesitamos mas memoria RAM.
No existe una formula mágica para saber cuanto espacio deberíamos reservar para swap. Hay que recordar que la memoria total disponible en Linux es RAM + Swap. Como datos orientativos podríamos decir que como mínimo, esta combinación debería ser de 32MB para sistemas que se utilicen en modo texto y de 64MB en adelante para sistemas que se utilicen en modo gráfico.
Aquí tienes una serie de consejos sobre la swap:
- Es recomendable el tener siempre algo de swap configurada, incluso en sistemas con mucha memoria.
- En linux no se puede tener mas de 128MB en una partición swap, si necesitas mas de 128MB de swap, puedes tener mas de una partición dedicada a swap, por ejemplo, dos de 128MB
- Si tienes mas de un disco, instala la swap en el que trabaje mas rápido.
- Si tienes mas de un disco que se puedan acceder simultáneamente (por ej. dos SCSI, o dos IDE en diferentes canales IDE), se puede ganar algo de velocidad teniendo una particion swap en cada uno de estos discos.
Para un uso privado "normal-alto" del sistema, aquí tienes unos ejemplos orientativos de la cantidad de swap recomendable:
- 16MB RAM + 64MB Swap
- 32MB RAM + 96MB Swap
- 64MB RAM + 64MB Swap
- 128MB RAM + 128MB Swap
- 256MB RAM + 128MB Swap
Como dato anecdótico, decir que existen servidores, en donde la cantidad de swap llega a ser de 256MB y hasta 512MB aunque yo tengo ordenadores con 16MB de RAM y 16MB de Swap como servidores de impresión que funcionan sin ningún problema.
En fin, cada uno debe de saber el uso que le va a dar a su sistema y analizar la cantidad de memoria necesaria, aunque si tienes espacio de sobra en el disco, mas vale tener mas Swap disponible que la necesaria, por lo que pueda ocurrir en un futuro, como dice el dicho, mas vale que sobre que no que falte.
Manejo de memoria
¿Qué es una partición? ¿Cómo creo una partición?
Particionar el disco duro es una manera de dividir el disco físico en varios discos lógicos. O lo que es lo mismo, al particionar un disco, dividimos el disco en varias particiones independientes unas de otras, creando la ilusión de que tenemos diferentes discos, cuando en realidad lo que tenemos es un solo disco físico dividido en partes. Una partición es una de estas partes (divisiones) del disco.
Existen dos clases de particiones: primarias y extendidas. En un disco solo podrás tener como máximo 4 particiones primaria y 1 extendida. En la partición extendida se podrán definir todas (bueno también existe un limite, pero es alto) las unidades lógicas que queramos. Con este sistema podemos tener una gran cantidad de particiones en nuestro disco.
Cualquier disco que tengamos en nuestro ordenador tiene al menos una partición primaria, que en la mayoría de los casos tiene un tamaño equivalente al total del disco.
Unos ejemplos aclararan las cosas:
- Un disco de 1Gb con una sola partición, tendrá una partición primaria de 1Gb (total del disco).
- Ese mismo disco podría tener 4 particiones primarias de 0.25Gb cada una, dando la ilusión de que tenemos 4 discos duros de 0.25Gb en vez de un solo disco de 1Gb.
- Otra combinación posible podría ser 4 particiones primarias de 0.10Gb y 1 extendida con 6 unidades lógicas de 0.10Gb, en este caso parecería que tenemos 10 discos duros de 0.10Gb cada uno.
Las combinaciones son múltiples y variadas y dependerán de nuestros gustos y de lo que necesitemos.
Casi todos los sistemas operativos traen un programa con el que podemos crear, modificar, borrar las particiones de nuestro disco. En Ms-Dos/Windows de llama FDISK, este programa solo puede trabajar con particiones de Ms-Dos/Windows. En Linux también se llama FDISK (/sbin/fdisk), pero es un programa mas potente, capaz de trabajar y crear particiones tanto para Linux como otros sistemas operativos. Si vas a trabajar con Linux, es recomendable el uso del FDISK que viene con tu distribución, para evitar problemas.
Al contrario que Ms-Dos, Windows, OS/2, las diferentes particiones en linux no se denominan C:, D:, E:, ...., etc, existe una denominación propia:
Si los discos son IDE:
- /dev/hda: Disco duro IDE como master en el canal IDE 1.
- /dev/hda1: Partición primaria 1 en /dev/hda
- /dev/hda2: Partición primaria 2 en /dev/hda
- /dev/hda3: Partición primaria 3 en /dev/hda
- /dev/hda4: Partición primaria 4 en /dev/hda
- /dev/hda5: Partición extendida 1 en /dev/hda
- /dev/hda6: Partición extendida 2 en /dev/hda
- .....
- .....
- /dev/hda16: Partición extendida 16 en /dev/hda
- /dev/hdb: Disco duro IDE como esclavo en el canal IDE 1.
- /dev/hdb1: Partición primaria 1 en /dev/hdb
- ........
- ........
- /dev/hdc: Disco duro IDE como master en el canal IDE 2.
- /dev/hdc1: Partición primaria 1 en /dev/hdc
- ........
- ........
- /dev/hdd: Disco duro IDE como esclavo en el canal IDE 2.
- /dev/hdd1: Partición primaria 1 en /dev/hdd
- ........
- ........
Si los discos son SCSI:
- /dev/sda: Disco duro SCSI nr.1.
- /dev/sda1: Partición primaria 1 en /dev/sda
- ........
- ........
- /dev/sdb: Disco duro SCSI nr.2.
- /dev/sdb1: Partición primaria 1 en /dev/sdb
- ........
- ........
IMPORTANTE: Es muy importante saber lo que se esta haciendo cuando trabajas con programas que modifican la tabla de particiones de un disco. Al cambiar la tabla de particiones de vuestro disco, se pierden los datos contenidos en las particiones afectadas. Realizar copias de seguridad de los datos que quieras mantener antes de usar FDISK
¿Dónde instalo Linux?
Linux se puede instalar en cualquier disco que tengas en tu sistema y en cualquier particion del disco duro (Primaria o extendida).
No podrás tener Linux en una partición compartida con otro sistema operativo, Linux necesita su propia particion/es para funcionar.
No hay comentarios:
Publicar un comentario